当前位置: 首页> 交通中文期刊数据库 >详情
原文传递 基于多智能体深度强化学习的停车系统智能延时匹配方法
题名: 基于多智能体深度强化学习的停车系统智能延时匹配方法
正文语种: 中文
作者: 赵聪;张昕源;李兴华;杜豫川
作者单位: 同济大学道路与交通工程教育部重点实验室;同济大学交通运输工程学院;同济大学城市交通研究院
关键词: 交通工程;城市停车;优化匹配;深度强化学习;多智能体;马尔科夫决策过程
摘要: “互联网+”模式下区域停车“用户-资源”优化匹配是解决找车位难问题的有效途径,传统研究主要关注动态匹配机制设计,缺乏对用户匹配时机的考虑。在随机动态环境下,用户到达目的地附近后进行适当的延时等待,往往可以获得更优质的泊位资源,但取决于当前的停车供需模式。据此首次提出智能延时匹配策略,将每个停车用户抽象为智能体,构建多智能体深度Q学习模型(M-DQN)。结合系统的停车供需状态学习,用户自主决策延时等待时间,进入分配池后,系统利用匈牙利算法进行泊位匹配。在智能体总数量可变的环境下,利用集中式训练与分布式执行的框架,实现多智能体协同优化。为对比智能延时策略的效果,设计等待零时长策略(Greedy)和等待最大时长策略(Max Delay)。在算例中,结合同济大学四平路校区实测停车数据,设计3种不同的停车供需模式场景。在工作日早高峰时段,Greedy是最优的匹配策略,M-DQN和Max Delay的平均停车过程总用时会增加,匹配成功率下降;在工作日非高峰时段,M-DQN的平均停车过程总用时相较于Greedy和Max Delay分别减少23.8%和22.4%,效果提升明显;在工作日晚高峰时段,M-DQN的平均停车过程总用时相较于Greedy和Max Delay分别减少了12.8%和14.5%,M-DQN可以结合供需状态学习到最优的匹配策略。研究结果表明:在停车供需相对平衡的环境下,所提出的延时匹配策略和多智能体深度强化学习方法可以有效减少用户停车的平均行驶时间和步行距离,且停车周转率越高效果越好;但延时策略在应用方面仍有一定的局限性,不适用于停车供给紧张,停车周转率较低的场景。
期刊名称: 中国公路学报
出版年: 2022
期: 07
页码: 261-272
检索历史
应用推荐