摘要: |
采用快速搜索随机树(RRT)算法进行路径规划时,在存在大量随机障碍物的复杂环境下,规划出的路径曲折且算法无法快速收敛,不能满足智能车路径规划的要求。为了实现智能车路径规划,提出一种基于RRT的运动规划算法——同心圆RRT算法。该算法在RRT算法的基础上结合智能车行驶时自身运动学约束,引入同心圆采样策略和邻近点选择方法。同心圆采样策略以目标点为同心圆的圆心,利用同心圆系数/控制同心圆的疏密程度,在同心圆上生成随机点以便确定下一路径点。邻近点选择方法考虑车辆运动学约束及目标点距离因素,在满足车辆运动学约束的前提下,计算邻近系数,将最小邻近系数对应的随机树节点作为邻近点;针对得到的规划路径,进一步提出基于车辆运动学约束下的路径简化方法,对得到的路径进行简化并使用3次B样条曲线对路径平滑处理,生成一条平滑且可执行的路径。研究结果表明:m=0.5-1.5时,提出的算法规划出路径所需时间最少;车辆姿态与下一路径点的夹角约束值越大,规划出路径所需时间越少,在夹角为35°时趋于稳定;在相同的环境中,提出的算法所规划的路径质量相比于RRT算法、目标偏向RRT算法及改进RRT,算法有显著提高,规划出路径所需时间及路径长度相比于RRT算法分别降低了43.1%和1&7%,相比于目标偏向RRT算法分别降低了7.3%和15.5%,相比于改进RRT-算法分别降低了29.6%和7%;智能小车的实车测试试验验证了该算法的有效性和实用性。 |